

The immunology behind long duration treatment with PD-1 blockade

Pierre Coulie de Duve Institute Universtity of Louvain

IOBE2100696 -13 - 03/21

Long duration of **response**

Long duration of treatment

Long duration of treatment

What is behind

- Immune memory: maintenance of a pool of memory T cells
 - (contrary to naive T cells, patrol in noninflammed tissues and are easily restimulated)

Long duration of treatment

What is behind

- Immune memory: maintenance of a pool of memory T cells
 - (contrary to naive T cells, patrol in noninflammed tissues and are easily restimulated)

- Persistent anti-tumor immune response
- ► No or very few tumor cells left
- Less agressive tumor variant

▶

Long duration of treatment

A long-acting CTLA-4 or PD-1 blockade is not required for a prolonged immune response

When to stop immunostimulatory antibodies (= current 'checkpoint blockade')?

When to stop immunostimulatory antibodies (= current 'checkpoint blockade') ?

- When a readily available and functional anti-tumor immunity has been built, and either has eliminated all tumor cells
 - $\circ~$ or will be able to eliminate or control new metastases

When to stop immunostimulatory antibodies (= current 'checkpoint blockade') ?

- When a readily available and functional anti-tumor immunity has been built, and either has eliminated all tumor cells
 - \circ or will be able to eliminate or control new metastases
 - Today, we cannot measure such responses in patients (While we can do so for antiviral vaccines: titers of neutralizing antibodies in the serum)

What does this require, in the context of CTLA-4 or PD-1 blockade?

When to stop immunostimulatory antibodies (= current 'checkpoint blockade')?

- When a readily available and functional anti-tumor immunity has been built, and either has eliminated all tumor cells
 - \circ or will be able to eliminate or control new metastases
 - Today, we cannot measure such responses in patients (While we can do so for antiviral vaccines: titers of neutralizing antibodies in the serum)

What does this require, in the context of CTLA-4 or PD-1 blockade ?

- A productive contact between tumor antigens and T cells (productive = leading to T cell activation)
- ► Concurrently: blocking Ab to CTLA-4, PD-1 or PD-L1

When to stop immunostimulatory antibodies (= current 'checkpoint blockade')?

- When a readily available and functional anti-tumor immunity has been built, and either has eliminated all tumor cells
 - \circ or will be able to eliminate or control new metastases
 - Today, we cannot measure such responses in patients (While we can do so for antiviral vaccines: titers of neutralizing antibodies in the serum)

What does this require, in the context of CTLA-4 or PD-1 blockade ?

- A productive contact between tumor antigens and T cells (productive = leading to T cell activation)
- ► Concurrently: blocking Ab to CTLA-4, PD-1 or PD-L1

Why do we need both?

\$

Wei S, et al. Cancer Discovery 2018; 8; 1069–86; Chen D & Mellman I, Immunity 2013; 39:1–10; Pardoll DM. Nat Rev Cancer. 2012;12:252-264; Sharma P et al. Science. 2015;348:56-61.

Wei S, et al. Cancer Discovery 2018; 8; 1069–86; Chen D & Mellman I, Immunity 2013; 39:1–10; Pardoll DM. Nat Rev Cancer. 2012;12:252-264; Sharma P et al. Science. 2015;348:56-61.

- ► Both CTLA-4 and PD-1 come to the T cell surface only following TCR activation.
- ► In vivo, TCR activation of anti-tumor T cells is certainly not permanent.

- ▶ Both CTLA-4 and PD-1 come to the T cell surface only following TCR activation.
- ► *In vivo*, TCR activation of anti-tumor T cells is certainly not permanent.
- It will depend on the release of tumor antigens by dying tumor cells, and on the capture of these antigens by antigen-presenting cells that will activate the T cells.
- ► When T cells can be directly re-stimulated by the tumor cells themselves, it depends on their having access to the tumor and on a non-immunosuppressive microenvironment.

- ▶ Both CTLA-4 and PD-1 come to the T cell surface only following TCR activation.
- ► *In vivo*, TCR activation of anti-tumor T cells is certainly not permanent.
- It will depend on the release of tumor antigens by dying tumor cells, and on the capture of these antigens by antigen-presenting cells that will activate the T cells.
- ► When T cells can be directly re-stimulated by the tumor cells themselves, it depends on their having access to the tumor and on a non-immunosuppressive microenvironment.
- It is therefore impossible to predict when exactly anti-tumor T cells will be activated in a given patient.
- It is expected that chemotherapy/radiotherapy/targeted therapy, which destroy tumor cells, increase the probability of activating anti-tumor T cells. Therapeutic anticancer vaccines even more so.

Delayed clinical response to immunostimulatory antibodies

Delayed clinical response to immunostimulatory antibodies

Duration of treatment

Delayed clinical response to immunostimulatory antibodies

Duration of treatment

Immediate clinical response to immunostimulatory antibodies

Immediate clinical response to immunostimulatory antibodies

Immediate clinical response to immunostimulatory antibodies

 $\frac{1}{2}$

Summary

- ▶ Under physiological conditions, CTLA-4 and PD-1 are present on the surface of activated T cells.
 - Cautionary note: regulatory T cells constitutively express high levels of surface CTLA-4, but we still do not know whether T-regs are important for the clinical responses to anti-CTLA-4 antibodies in humans
- Thus the main effects of CTLA-4 or PD-1 blockades in cancer immunotherapy are only expected following T cell activation, which implies tumor antigen release or presentation.
 - Cautionary note: tumors often contain so-called 'exhausted' T cells, which bear PD-1 and other inhibitory co-receptors. They are thought to be chronically activated and re-activated by PD-1 blockade

Summary

- ▶ Under physiological conditions, CTLA-4 and PD-1 are present on the surface of activated T cells.
 - Cautionary note: regulatory T cells constitutively express high levels of surface CTLA-4, but we still do not know whether T-regs are important for the clinical responses to anti-CTLA-4 antibodies in humans
- Thus the main effects of CTLA-4 or PD-1 blockades in cancer immunotherapy are only expected following T cell activation, which implies tumor antigen release or presentation.
 - Cautionary note: tumors often contain so-called 'exhausted' T cells, which bear PD-1 and other inhibitory co-receptors. They are thought to be chronically activated and re-activated by PD-1 blockade
- When and where anti-tumor T cells are activated in a given patient, is unpredictable, justifying long duration checkpoint blockade.
- This physiology of T cell activation increased or decreased, but never initiated, by co-receptors likely explains that the observed clinical effects of CTLA-4 or PD-1 blockades can be delayed.
- It supports the combination of CTLA-4/PD-1 blockades with other modalities of tumor cell destruction.

