

www.immunoscienceacademy.be



Treatment of GI Cancers with checkpoint inhibitors and immunotherapy: are we on the edge of a new era?

> Prof Eric Van Cutsem, MD, PhD Digestive Oncology Leuven, Belgium Eric.VanCutsem@uzleuven.be

Mercury number IOBE18NP04371-08 Date of preparation: December 2018 Copyright © 2019 by Bristol-Myers Squibb Company

Any off-label data shown are used to support the educational message of the presentation and not intended to endorse use of any drug in any way







## Disclosures

#### Receipt of grants/research supports:

Receipt of honoraria or consultation fees:

Amgen, Bayer, BMS, Boehringer, Celgene, Ipsen, Lilly, Merck, Merck KgA, Novartis, Roche, Servier

Bayer, BMS, Celgene, Lilly, Merck, Merck KgA, Novartis, Servier





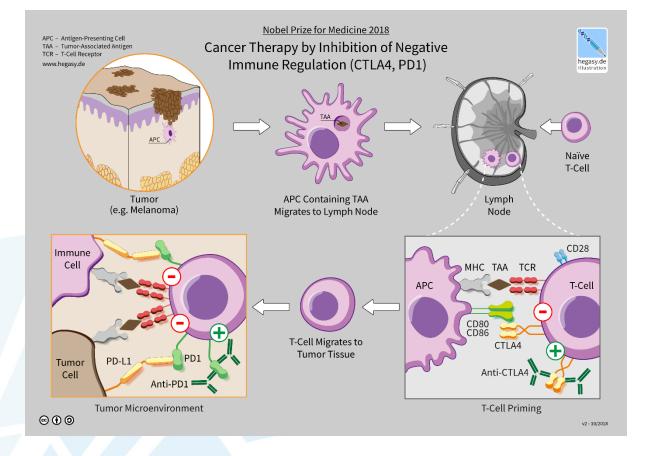
Better define subgroups with different prognostic and different treatments Find predictive markers for precision medecine

Combine different targeted agents in accordance with the molecular profile of the patients tumor

Induce an efficient immune response from the host against the tumor









- $\circ$  Objectives:
  - Understand the current and potential future role of checkpoint inhibitors in GI cancers, including discussions about patient selection
  - Understand new challenging topics and directions in IO and GI cancer
- Focus:
  - Gastroesophageal cancer
  - Colorectal cancer: MSI-H
  - Hepatocellular carcinoma

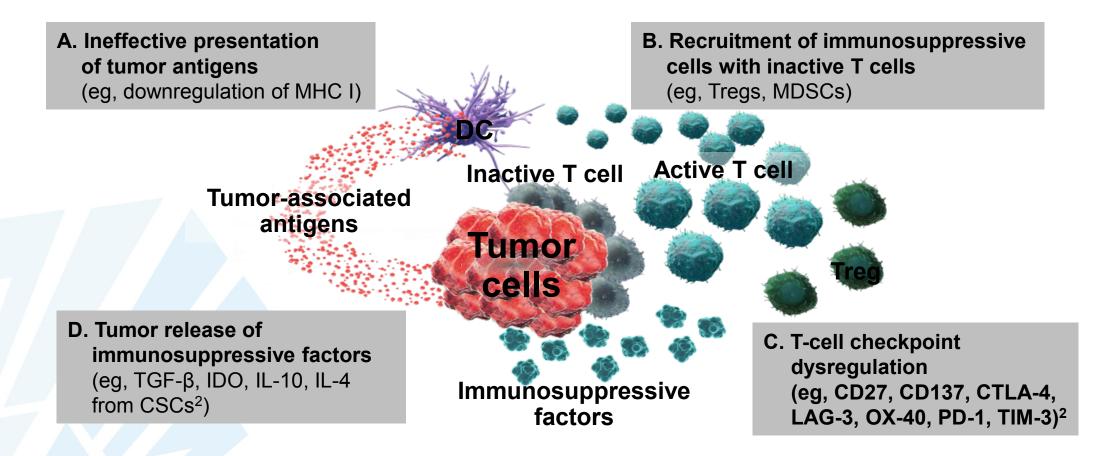
# 

#### **James Allison**







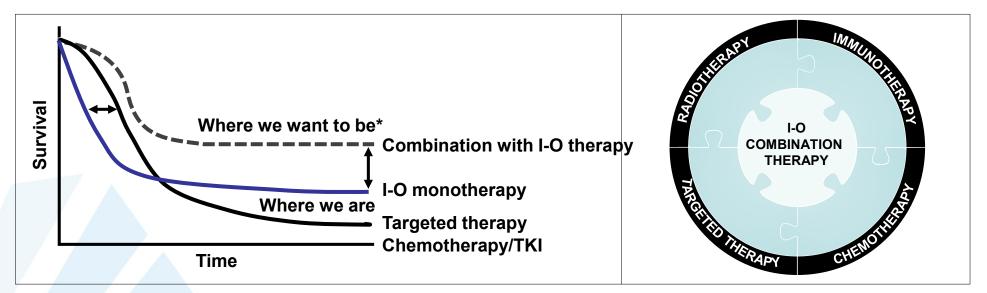

Doctor Honoris Causa, University Leuven, 2017 Noble Prize 2018

He plays the harmonica for a blues band of immunologists and oncologists called the Checkpoints. He also plays with a local band called the Checkmates

**Source Wikepedia** 








CD, cluster of differentiation; CSC, cancer stem cells; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; IDO, indoleamine 2,3-dioxygenase; LAG-3; lymphocyte activation gene-3; IL, interleukin; MDSC, myeloid-derived suppressor cell; MHC, major histocompatibility complex; PD-1, programmed death-1; TGF-β, transforming growth factor beta; TIM-3, T cell immunoglobulin and mucin domain-3; Treg, regulatory T cell.

1. Vesely MD et al. Ann Rev Immunol. 2011;29:235-271. 2. Todaro M et al. Cell Stem Cell. 2007;1(4):389-402. 3. Clinicaltrials.gov.

### UZ I-O Therapies as a Critical Backbone LEUVEN for Cancer Treatment





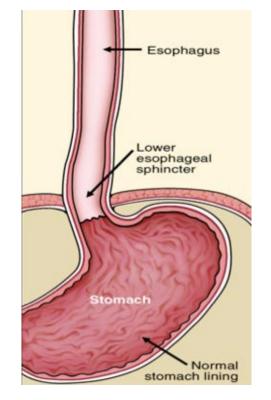
I-O combination therapies have demonstrated durable benefit across a number of tumor types<sup>1,2</sup>

- Nivolumab + ipilimumab demonstrated benefit over SOC in NSCLC, melanoma, and RCC<sup>3-5</sup>
- Pembrolizumab + chemotherapy, atezolizumab + chemotherapy demonstrated benefit over SOC in NSCLC<sup>6-8</sup>

Many ongoing efforts are investigating I-O therapies as the backbone for novel combinations

\*Hypothetical chart illustrating a scientific concept that is beyond data available so far. This chart is not intended to predict what may actually be observed in clinical studies. 1. Voena C, Chiarle R. *Discov Med.* 2016;21(114):125-133. 2. Sharma P, Allison JP. *Cell.* 2015;161(2):205-214. 3. Bristol-Myers Squibb [press release]. February 5, 2018. 4. Larkin J et al. *N Engl J Med* 2015;373(13):1270-1271. 5. Motzer RJ et al. Oral presentation at SITC 2017. O38. 6. Merck & Co. [press release]. January 18, 2018. 7. F.eck et al. Oral

Presentation at ESMO IO 2017. LBA1. 8. Roche [press release]. March 20, 2018.


Any off-label data shown are used to support the educational message of the presentation and not intended to endorse use of any drug in any way

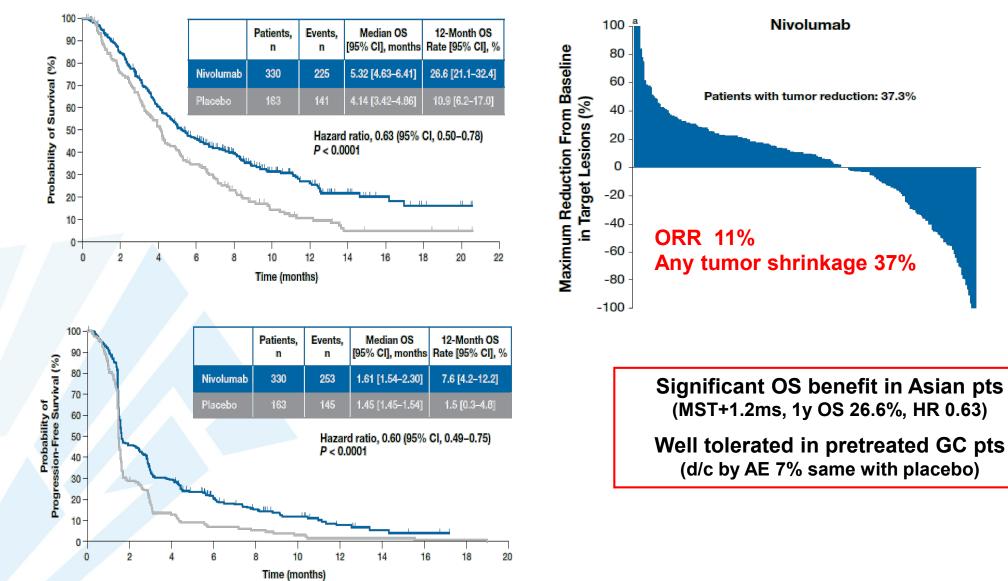
# 



- Cytotoxics: modest impact: median survival of doublets/triplets usually <12 months</li>
- New Targets
  - Her2: trastuzumab\*
  - Angiogenesis: ramucirumab\*
  - o EGFR
  - o mTOR
  - **cMET**
  - PD\*\*/PDL
  - o CTLA4
  - FGF
  - Claudine
  - Stemcell: STAT3
  - **MMP9**
  - o **PARP**
  - 0 ....

\*Approved agents in EU and most other regions \*\*Approved USA, Japan, Switzerland







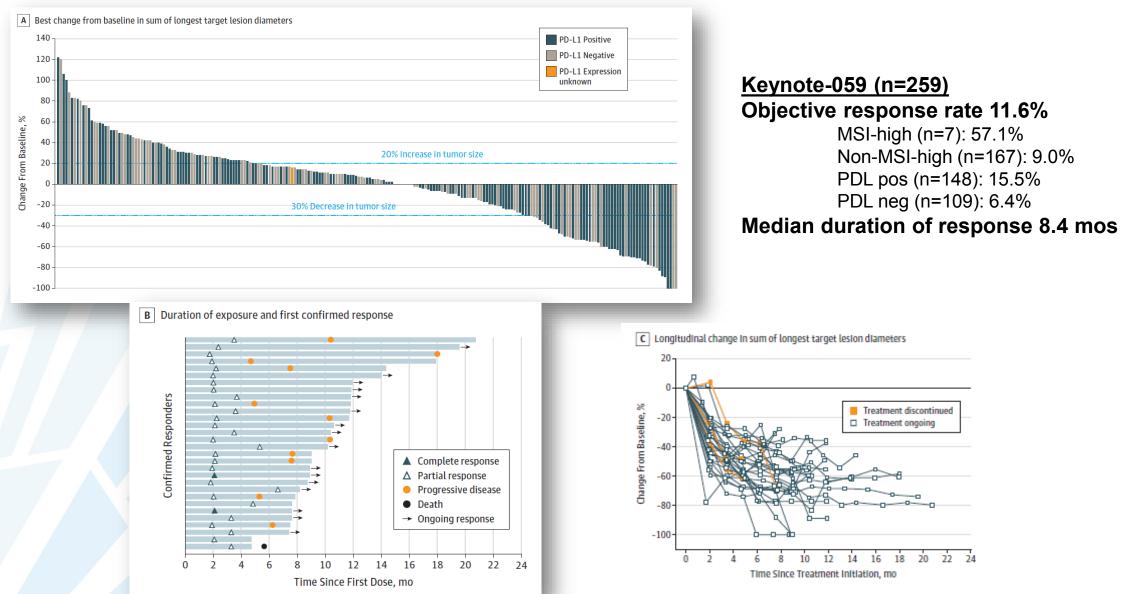

- Role of PD(L) antibodies in gastric and oesophageal adenocarcinoma:
  - Nivolumab and pembrolizumab are active in pretreated patients
  - Combination with chemotherapy?
  - Early lines?
  - Maintenance treatment?
  - Adjuvant or neo-adjuvant therapy?
  - Increasing activity: combination of IO approaches
  - Understanding mechanism of action
    - Pseudoprogression
    - •
  - Selection: biomarkers: PDL-IHC, MSI-H, EBV, TML,.....

#### Phase 3 ATTRACTION-2: LEUVEN Nivolumab for GC after standard treatment





Any off-label data shown are used to support the educational message of the presentation and not intended to endorse use of any drug in any way


Kang Y-K et al. Lancet. 2017;390:2461-2471.



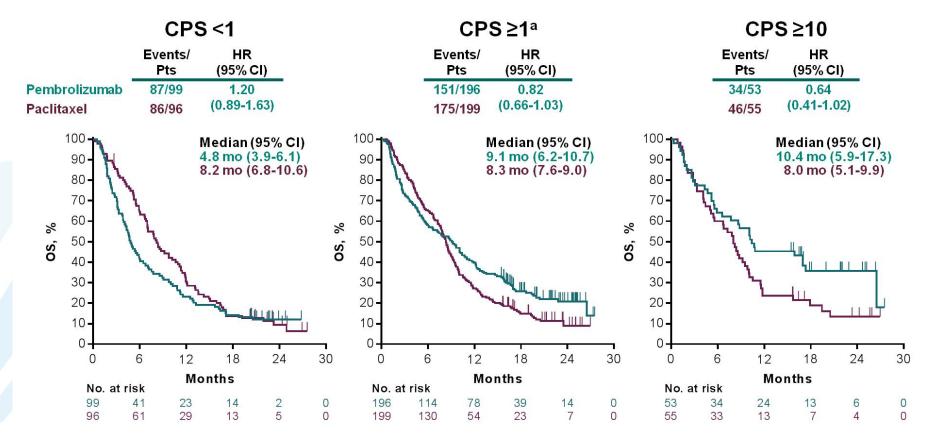
#### **KEYNOTE-059:**

Pembrolizumab in refractory gastric cancer – cohort 1





Any off-label data shown are used to support the educational message of the presentation and not intended to endorse use of any drug in any way

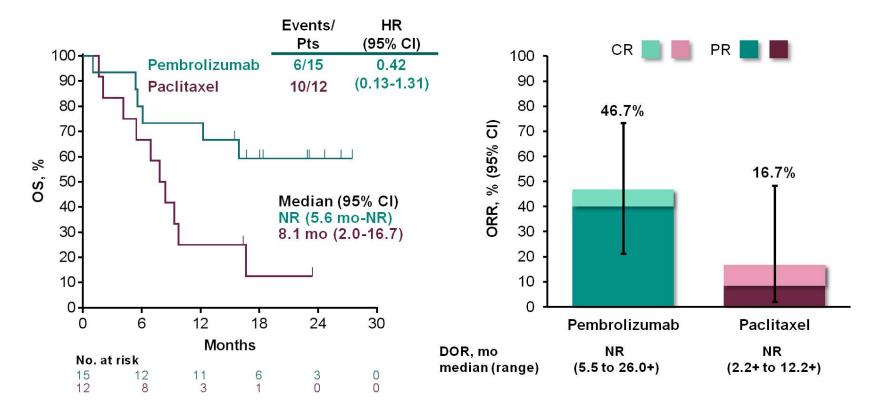

Fuchs C, et al. JAMA Oncol 2018



Keynote 061: 2nd line gastric cancer: pembrolizumab vs paclitaxel: survival in CPS <a>1</a>



## **Overall Survival by PD-L1 CPS**

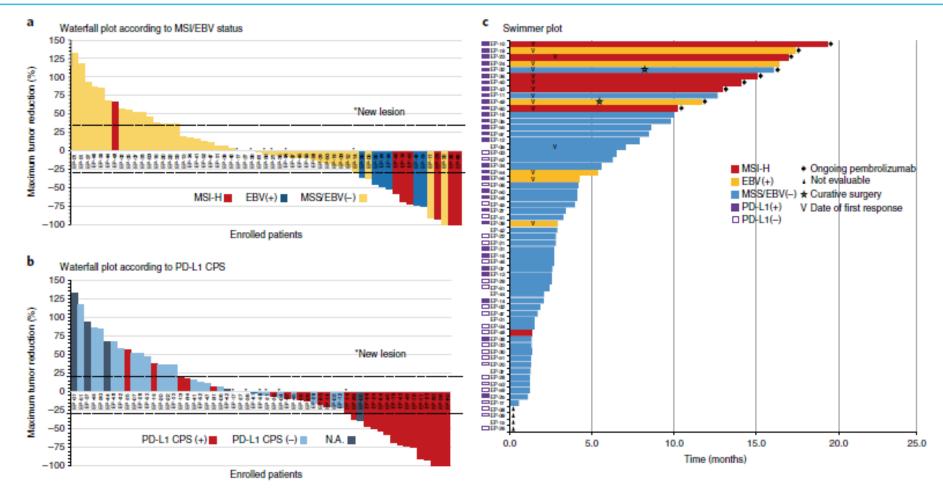



<sup>a</sup>Primary end point. Data cutoff date: Oct 26, 2017.



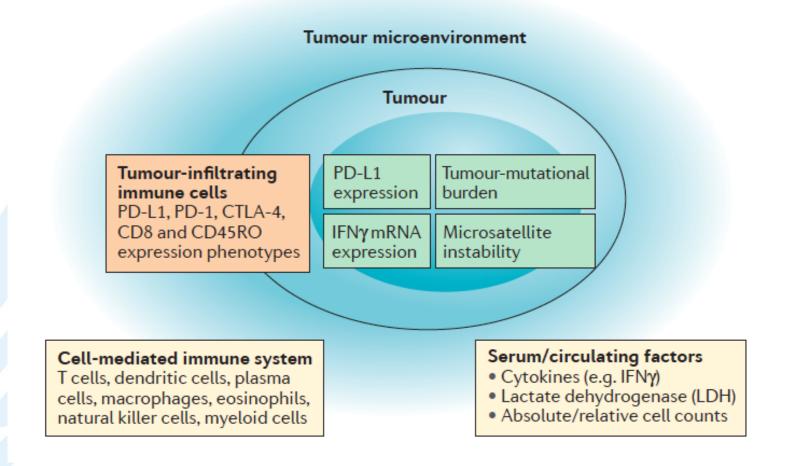


## OS, ORR, and DOR for MSI-H Tumors<sup>a</sup>




<sup>a</sup>Post-hoc subgroup analysis. Data cutoff date: Oct 26, 2017.

Any off-label data shown are used to support the educational message of the presentation and not intended to endorse use of any drug in any way Presented By Kohei Shitara at 2018 ASCO Annual Meeting

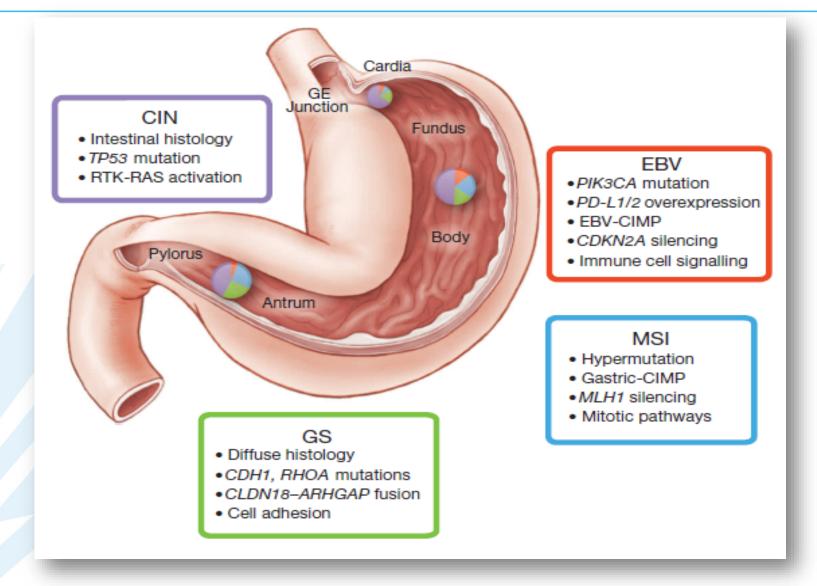

# UZ<br/>LEUVENMolecular characterization of clinical responses<br/>to pembrolizumab in metastatic gastric cancer





**Fig. 1** | **Response to pembrolizumab in patients with gastric cancer. a**, Waterfall plot of response to pembrolizumab according to MSI status and EBV. EP represents each patient's identification number. Y axis represents percentage of maximum tumor reduction assessed according to RECIST 1.1 criteria. Lower dotted line represents tumor reduction of 30% per RECIST, which defines partial response (PR). b, Waterfall plot according to PD-L1 CPS. Y axis represents percentage of maximum tumor reduction assessed according to RECIST 1.1 criteria. **c**, Swimmer plot. Each lane represents a single patient's data. *X* axis represents the duration of pembrolizumab therapy for each patient. Patient identity number is provided in Table 2. NA, not available.






Nishino et al. Nat Rev Clin Oncol 2017



#### **Comprehensive Molecular Characterization**





The Cancer Genome Atlas Research Network, Nature 2014; 11th September, 513: 202-209

## 

## Checkmate-032: nivolumab or nivolumab + ipilimumab in gastric cancer



|                             | Table 2. C        | RR, DCR, and DOR p | er Investigator Assessr | nent and BICR     |                  |                  |
|-----------------------------|-------------------|--------------------|-------------------------|-------------------|------------------|------------------|
|                             | NIVO3             | (n = 59)           | NIVO1 + IF              | PI3 (n = 49)      | NIVO3 + IF       | pl1 (n = 52)     |
| Variable                    | Investigator      | BICR               | Investigator            | BICR              | Investigator     | BICR             |
| ORR, No. (%; 95% Cl)        | 7 (12; 5 to 23)   | 4 (7; 2 to 17)     | 12 (24; 13 to 39)       | 10 (20; 10 to 34) | 4 (8; 2 to 19)   | 2 (4; 1 to 13)   |
| Complete response           | 1 (2)             | 0                  | 1 (2)                   | 1 (2)             | 0                | 1 (2)            |
| Partial response            | 6 (10)            | 4 (7)              | 11 (22)                 | 9 (18)            | 4 (8)            | 1 (2)            |
| Stable disease              | 12 (20)           | 18 (31)            | 8 (16)                  | 13 (27)           | 15 (29)          | 17 (33)          |
| Progressive disease         | 34 (58)           | 26 (44)            | 23 (47)                 | 18 (37)           | 24 (46)          | 25 (48)          |
| Unable to determine         | 6 (10)            | 11 (19)            | 6 (12)                  | 8 (16)            | 9 (17)           | 8 (15)           |
| DCR, No. (%)*               | 19 (32)           | 22 (37)            | 20 (41)                 | 23 (47)           | 19 (37)          | 19 (37)          |
| Median TTR, months (range)  | 1.6 (1.2 to 4.0)  | 1.4 (1.2 to 2.1)   | 2.7 (1.2 to 14.5)       | 2.6 (1.1 to 4.2)  | 2.6 (1.3 to 2.8) | 2.0 (1.2 to 2.7) |
| Median DOR, months (95% CI) | 7.1 (3.0 to 13.2) | 14.1 (2.8 to 14.1) | 7.9 (2.8 to NE)         | NR (2.7 to NE)    | NR (2.5 to NE)   | NR (NE to NE)    |

Abbreviations: BICR, blinded independent central review; DCR, disease control rate; DOR, duration of response; IPI1, ipilimumab 1 mg/kg; IPI3, ipilimumab 3 mg/kg; NE, not estimable; NIVO1, nivolumab 1 mg/kg; NIVO3, nivolumab 3 mg/kg; NR, not reached; ORR, objective response rate; TTR, time to response. \*Patients with a best objective response of complete response, partial response, or stable disease.

Janjigian Y et al, J Clin Onc 2018

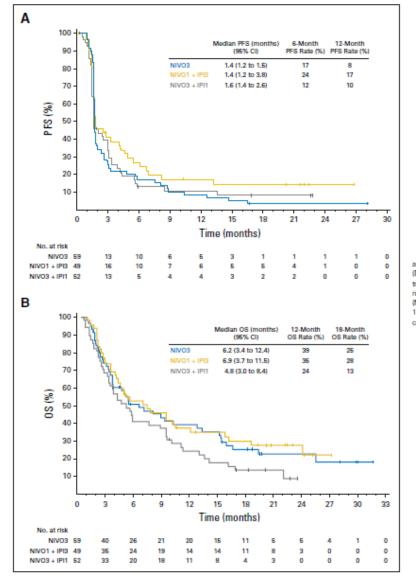
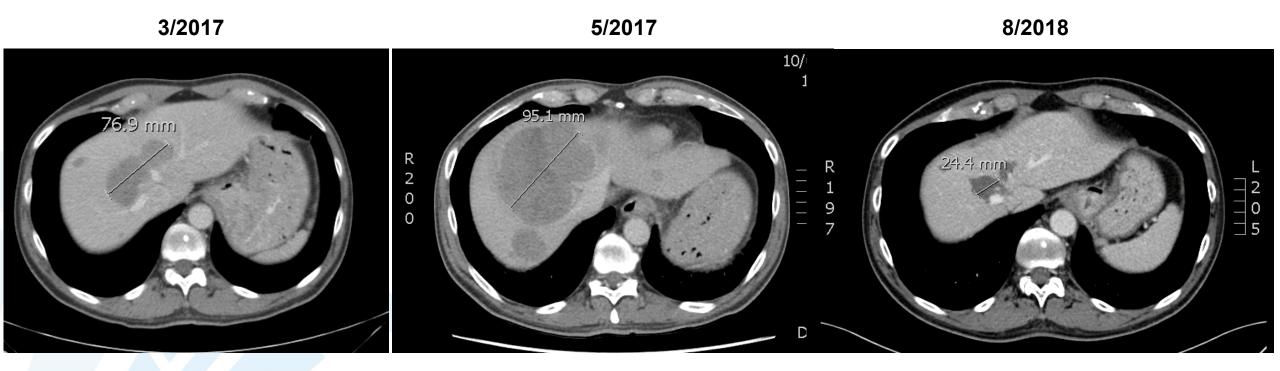



Fig2. Kaplan-Meier curves of (A) investigatorassessed progression-free survival (PFS) and (B) overall survival (OS) in all enrolled patients by treatment group: nivolumab 3 mg/kg (NIVO3), nivolumab 1 mg/kg plus ipTimumab 3 mg/kg (NIVO1 + IPI3), and NIVO3 plus ipTimumab 1 mg/kg (NIVO3 + IPI1). Hash marks indicate consored observations.


Any off-label data shown are used to support the educational message of the presentation and not intended to endorse use of any drug in any way



Metastatic GE junction adenocarcinoma: combination of IO agents



#### **Treatment with Nivolumab + MM9-AB**



#### Understanding pseudoprogression

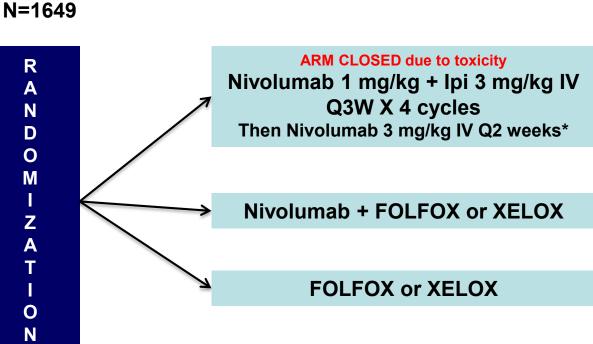
# 

## CheckMate-649



#### Untreated Advanced/Metastaic Gastric/GEJ Cancer Nivo + Ipi or Nivo + FOLFOX vs FOLFOX – open label, randomized phase 3 study

#### Enrolling all-comers


- Unresectable advanced or recurrent gastric cancer (including GEJ)
- No adjuvant/neoadjuvant ≤6 mos prior
- ECOG PS 0-1
- Must provide tissue sample

Primary Endpoints:

- Nivo+chemo OS/PFS/ORR all-comers
- Nivo-Ipi OS PD-L1+

**Secondary Endpoints:** 

- Nivo-Ipi OS in all-comers
- Nivo-Ipi or Nivo/Chemo PFS in PD-L1+
- QoL (TTSD)



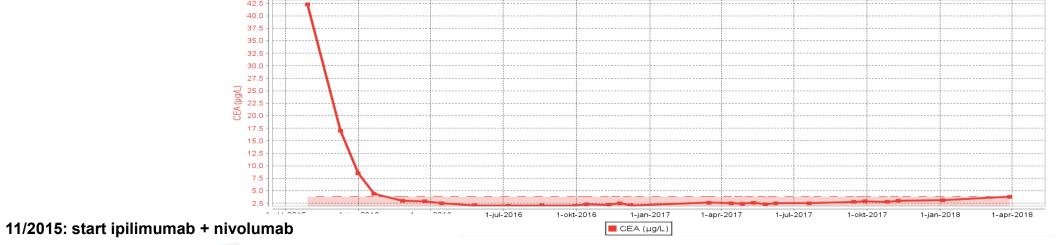

Primary Completion Date: March 2020 Opened 10/16 190 study sites

# 

### COLON CANCER Female, 66y



- Lynch syndrome, germline MSH2 mutation
- 2008: endometrium carcinoma R/ surgery
- 7/2013: sigmoidadenocarcinoma pT4N2M1 (MSI-H, RAS mt)
  - Resection of the primary tumor
  - 9/2013 12/2013: mFolfiri-bevacizumab
  - 1/2015: Progressive Disease (PD): restart mFolfiri-bevacizumab
  - 7/2015: PD with cutaneous metastases, retroperitoneal and inguinal lymph nodes
  - 9/2015: PD, mFolfox-bevacizumab
  - 11/2015: PD








#### COLON CANCER Female, 66y











Any off-label data shown are used to support the educational message of the presentation and not intended to endorse use of any drug in any way



#### COLON CANCER Female, 66y



#### 11/2015: start ipilimumab + nivolumab





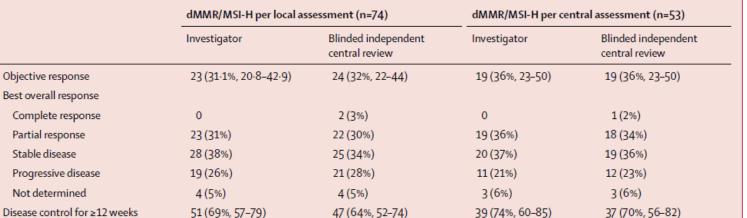


11/2015



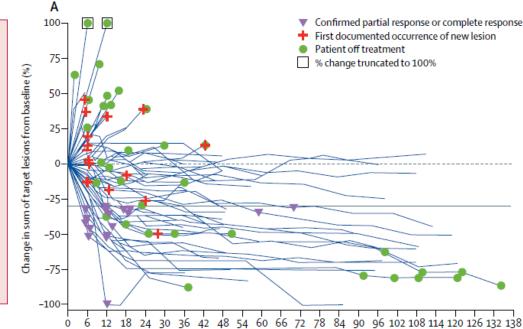


02/2016




12/2018

Any off-label data shown are used to support the educational message of the presentation and not intended to endorse use of any drug in any way








Data are n (%, 95% CI) or n (%). dMMR/MSI-H=DNA mismatch repair deficient/microsatellite instability-high.

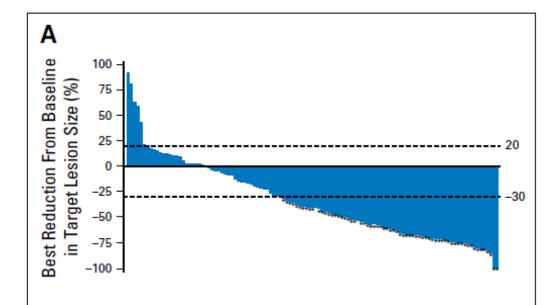
Table 2: Objective response, best overall response, and disease control per investigator and masked independent central review assessments





#### Response to Pembrolizumab in MSI-High / deficient MMR tumors




| Type of response                      | Patients ( $n = 86$ ) |                                                            |
|---------------------------------------|-----------------------|------------------------------------------------------------|
| Complete response                     | 18 (21%)              |                                                            |
| Partial response                      | 28 (33%)              |                                                            |
| Stable disease                        | 20 (23%)              |                                                            |
| Progressive disease                   | 12 (14%)              |                                                            |
| Not evaluable                         | 8 (9%)                |                                                            |
| Objective response rate               | 53%                   | Ampulla of Vater                                           |
| 95% CI                                | 42% to 64%            | <ul> <li>Cholangiocarcinoma</li> <li>Colorectal</li> </ul> |
| Disease control rate                  | 77%                   | Endometrial cancer Gastroesophageal                        |
| 95% CI                                | 66% to 85%            | <ul> <li>Neuroendocrine</li> <li>Osteosarcoma</li> </ul>   |
| Median progression-free survival time | NR                    | <ul> <li>Pancreas</li> <li>Prostate</li> </ul>             |
| 95% CI                                | 14.8 months to NR     | Small Intestine                                            |
| 2-year progression-free survival rate | 53%                   | <ul> <li>Unknown Primary</li> </ul>                        |
| 95% CI                                | 42% to 68%            |                                                            |
| Median overall survival time          | NR                    |                                                            |
| 95% CI                                | NR to NR              |                                                            |
| 2-year overall survival rate          | 64%                   |                                                            |
| 95% CI                                | 53% to 78%            |                                                            |

- 11 patients achieved a CR and were taken off therapy after 2 years of treatment.
- No evidence of cancer PD has been observed in those patients with a median time off therapy of 8.3 months.



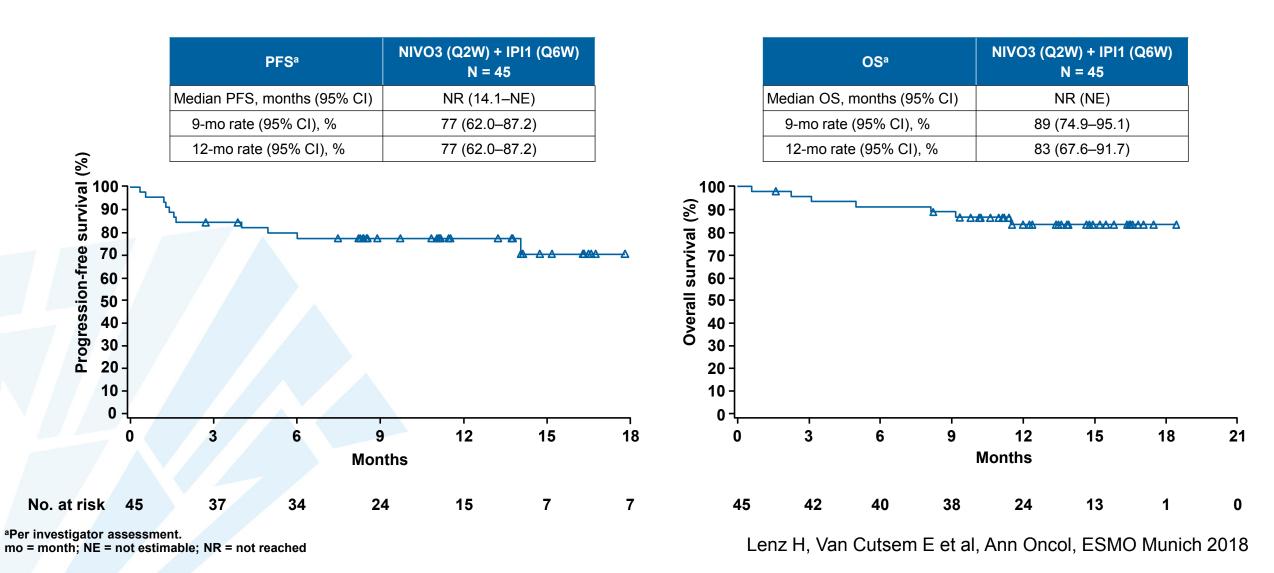
#### Durable Responses with nivolumab + ipilimumab in MSI-H mCRC

| Table 2. ORR, Best Overall Response, and DCR per Investigator Assessment $(N = 119)$ |         |              |  |  |
|--------------------------------------------------------------------------------------|---------|--------------|--|--|
| Response                                                                             | No. (%) | 95% CI       |  |  |
| ORR                                                                                  | 65 (55) | 45.2 to 63.8 |  |  |
| Best overall response                                                                |         |              |  |  |
| Complete response                                                                    | 4 (3)   |              |  |  |
| Partial response                                                                     | 61 (51) |              |  |  |
| Stable disease                                                                       | 37 (31) |              |  |  |
| Progressive disease                                                                  | 14 (12) |              |  |  |
| Not determined                                                                       | 3 (3)   |              |  |  |
| Disease control for ≥ 12 weeks                                                       | 95 (80) | 71.5 to 86.6 |  |  |



# W LEUVEN CheckMate 142 in first line MSI-H mCRC




| Investigator-assessed                                                   | NIVO3 (Q2W) + IPI1 (Q6W)<br>N = 45                      |
|-------------------------------------------------------------------------|---------------------------------------------------------|
| <b>ORRª, n (%)</b>                                                      | 27 ( <b>60</b> )                                        |
| [95% Cl]                                                                | [44.3–74.3]                                             |
| Best overall response, n (%)*<br>CR<br>PR<br>SD<br>PD<br>Not determined | 3 ( <b>7</b> )<br>24 (53)<br>11 (24)<br>6 (13)<br>1 (2) |
| <b>DCR<sup>b</sup>, n (%)</b>                                           | 38 ( <b>84</b> )                                        |
| [95% Cl]                                                                | [70.5–93.5]                                             |

- Responses were observed regardless of tumor PD-L1 expression, BRAF or KRAS mutation status, or diagnosis of Lynch syndrome
  - The ORR and DCR in patients with a BRAF mutation (n = 17) were 71% and 88%, respectively

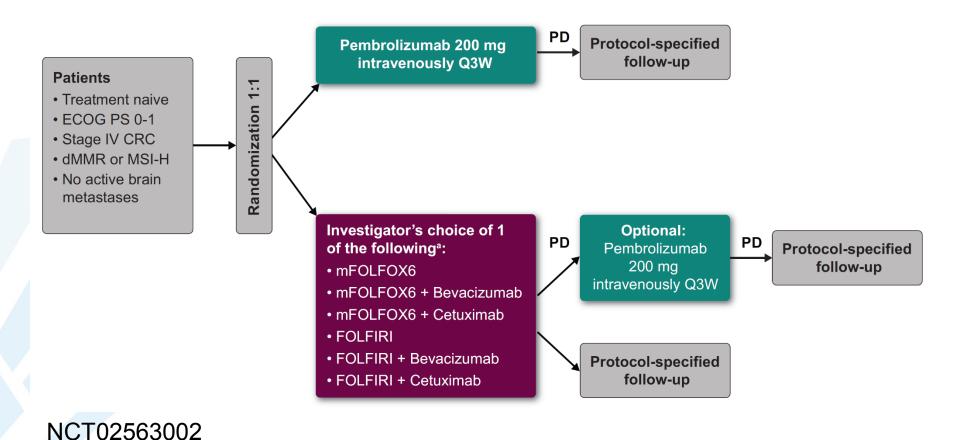
Lenz H, Van Cutsem E et al, Ann Oncol, ESMO Munich 2018

#### W UZ LEUVEN CheckMate 142 in first line MSI-H mCRC





Any off-label data shown are used to support the educational message of the presentation and not intended to endorse use of any drug in any way




#### **KEYNOTE-177**



#### First-Line Trial for Mismatch Repair–Deficient or Microsatellite Instability–High Metastatic Colorectal Carcinoma

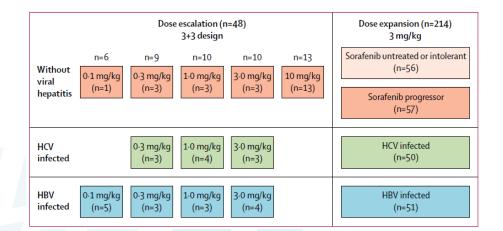
KEYNOTE-177 is a 2-arm, randomized, open-label, multisite, phase 3 trial



#### Diaz L et al, ASCO GI 2018






- Nivolumab and pembrolizumab provided durable responses in MSI-H CRC patients who received ≥1 prior therapy
- Nivolumab with or without ipilimumab provided also durable responses in MSI-H
   CRC patients who received ≥1 prior therapy and in first line treatment
- Ongoing studies in first line and in stage III MSI-H colon cancer
- Activity of IO agents in MSS cancer:
  - ✓ No activity of atezoluzimab + cobimetinib
  - ✓ No activity of atezoluzimab + bevacizumab +5FU/LV in maintenance of first line mCRC
  - ✓ New approaches:....



#### **CHECKMATE-040**



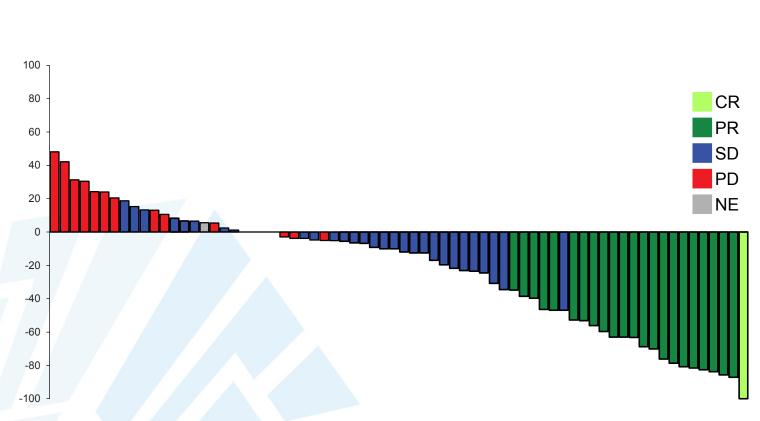
#### Nivolumab in 2<sup>nd</sup> line HCC



Recommended dose for expansion: 3 mg/kg

|                                                         | Uninfected untreated/<br>intolerant (n=56) | Uninfected progressor<br>(n=57) | HCV infected (n=50) | HBV infected (n=51) | All patients (n=214) |
|---------------------------------------------------------|--------------------------------------------|---------------------------------|---------------------|---------------------|----------------------|
| Objective response*                                     | 13 (23%; 13 to 36)                         | 12 (21%; 11 to 34)              | 10 (20%; 10 to 34)  | 7 (14%; 6 to 26)    | 42 (20%; 15 to 26)   |
| Complete response                                       | 0                                          | 2 (4%)                          | 0                   | 1 (2%)              | 3 (1%)               |
| Partial response                                        | 13 (23%)                                   | 10 (18%)                        | 10 (20%)            | 6 (12%)             | 39 (18%)             |
| Stable disease                                          | 29 (52%)                                   | 23 (40%)                        | 23 (46%)            | 21 (41%)            | 96 (45%)             |
| Progressive disease                                     | 13 (23%)                                   | 18 (32%)                        | 14 (28%)            | 23 (45%)            | 68 (32%)             |
| Not evaluable                                           | 1 (2%)                                     | 4 (7%)                          | 3 (6%)              | 0                   | 8 (4%)               |
| Duration of response*                                   |                                            |                                 |                     |                     |                      |
| KM median                                               | 8-4 (8-3 to NE)                            | NR                              | 9·9 (4·5 to 9·9)    | NR                  | 9·9 (8·3 to NE)      |
| Ongoing, n/N (%)                                        | 8/13 (62%)                                 | 7/12 (58%)                      | 8/10 (80%)          | 5/7 (71%)           | 28/42 (67%)          |
| Disease control*                                        | 42 (75%; 62 to 86)                         | 35 (61%; 48 to 74)              | 33 (66%; 51 to 79)  | 28 (55%; 40 to 69)  | 138 (64%; 58 to 71)  |
| Disease control with<br>stable disease for<br>≥6 months | 22 (39%; 27 to 53)                         | 22 (39%; 26 to 52)              | 17 (34; 21 to 49)   | 18 (35%; 22 to 50)  | 79 (37%; 30 to 44)   |
| Overall survival                                        |                                            |                                 |                     |                     |                      |
| 6 months                                                | 89% (77 to 95)                             | 75% (62 to 85)                  | 85% (72 to 93)      | 84% (71 to 92)      | 83% (78 to 88)       |
| 9 months                                                | 82% (68 to 90)                             | 63% (49 to 74)                  | 81% (66 to 90)      | 70% (55 to 81)      | 74% (67 to 79)       |
| KM median                                               | NR                                         | 13·2 (8·6 to NE)                | NR                  | NR                  | NR                   |
| Progression-free survival*                              |                                            |                                 |                     |                     |                      |
| KM median                                               | 5·4 (3·9 to 8·5)                           | 4·0 (2·6 to 6·7)                | 4·0 (2·6 to 5·7)    | 4·0 (1·3 to 4·1)    | 4.0 (2.9 to 5.4)     |

Unless otherwise indicated, data are n (%; 95% Cl); n (%); months (95% Cl); or % (95% Cl). HCV=hepatitis C virus. HBV=hepatitis B virus. KM=Kaplan-Meier estimate. NR=not reached. NE=not estimable. RECIST=Response Evaluation Criteria In Solid Tumors. \*Determined by investigator assessment using RECIST version 1.1.


Table 4: Nivolumab efficacy in the dose-expansion phase

Any off-label data shown are used to support the educational message of the presentation and not intended to endorse use of any drug in any way



#### Phase 1b in HCC: atezolizumab plus bevacizumab





CR, complete response; NE, not evaluable or missing; PD, progressive disease; PR, partial response; SD, stable disease; SLD, sum of longest diameter.

<sup>a</sup> Data from 4 patients (6%) not evaluable or missing. <sup>b</sup> One patient without region information. <sup>c</sup> Baseline AFP data from 5 patients missing. <sup>d</sup> EHS/MVI baseline data missing from 1 patient. Data cutoff: 26 July 2018.

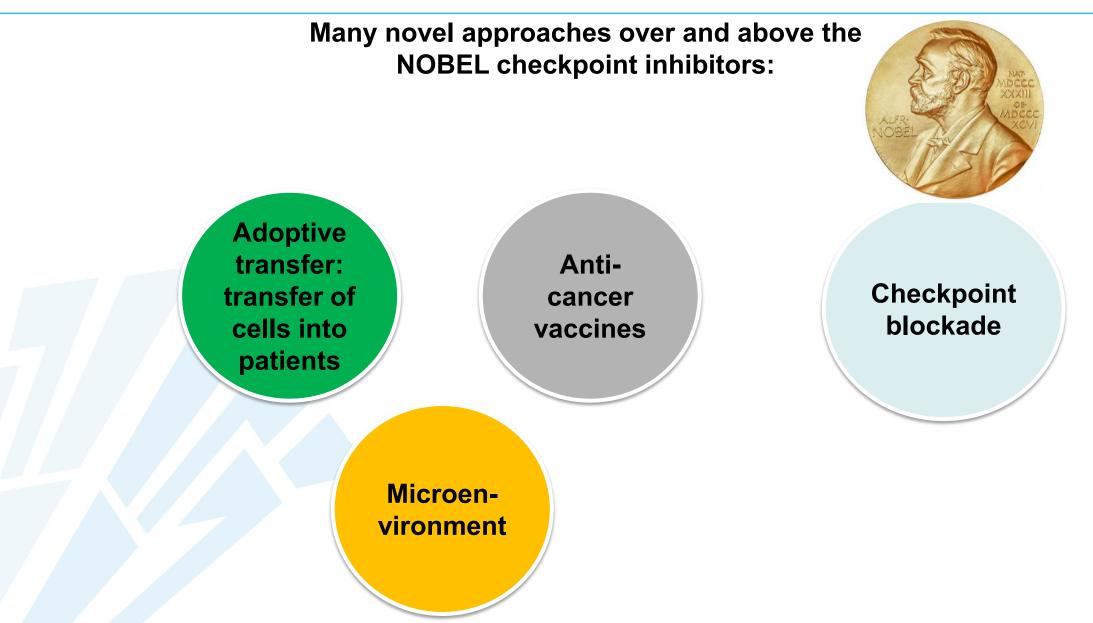
| ORR                                   |            |
|---------------------------------------|------------|
| Overall, n (%)ª                       | 23/73 (32) |
| CR                                    | 1/73 (1)   |
| PR                                    | 22/73 (30) |
| SD                                    | 33/73 (45) |
| PD                                    | 13/73 (18) |
| By region, n/n (%) <sup>b</sup>       |            |
| Asia excluding Japan                  | 12/41 (29) |
| Japan/USA                             | 10/31 (32) |
| By aetiology, n/n (%)                 |            |
| HBV                                   | 11/36 (31) |
| HCV                                   | 10/23 (43) |
| Non-viral                             | 2/14 (14)  |
| By baseline AFP, n/n (%) <sup>o</sup> | 2          |
| < 400 ng/mL                           | 12/41 (29) |
| ≥ 400 ng/mL                           | 11/27 (41) |
| By EHS/MVI, n/n (%) <sup>d</sup>      |            |
| EHS and/or MVI                        | 18/64 (28) |
| MVI negative                          | 13/32 (41) |
| EHS negative                          | 9/22 (41)  |
| Neither EHS nor MVI                   | 5/8 (63)   |

#### Pishvaian et al, Ann Onc, ESMO Munich 2018





| Study Name                                     | Design / 1ry endpoint                                                                             | Primary Completion Date          |
|------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------|
| CHECKMATE-459<br>(Phase III)                   | Nivolumab vs. sorafenib (1 <sup>st</sup> line<br>HCC)<br>1ry endpoint: OS                         | 1ry completion: Oct 16, 2018     |
| IMbrave150<br>(Phase III)                      | Atezolizumab + bevacizumab vs.<br>sorafenib<br>(1 <sup>st</sup> line HCC)<br>1ry endpoint: OS/ORR | 1ry completion: May, 2021        |
| HIMALAYA<br>(Phase III)                        | Durvalumab ± tremelimumab vs.<br>sorafenib<br>(1 <sup>st</sup> line HCC)<br>1ry endpoint: OS      | 1ry completion: March, 2020      |
| BGB-A317<br>(Phase III, with safety<br>run-in) | BGB-A317 (PD-1 Ab) vs. sorafenib<br>(1 <sup>st</sup> line HCC)<br>1ry endpoint: OS (+ PK/PD info) | 1ry completion: January,<br>2022 |






- Nivolumab and pembrolizumab demonstrated promising clinical efficacy and manageable safety in patients with advanced HCC, previously treated with sorafenib
  - Clinical efficacy was durable
  - Safety profile was generally comparable to that established in other indications with few immune-mediated hepatic events and no viral flares
- Phase 3 studies in first and second line treatment of HCC are ongoing to evaluate the role of checkpoint inhibitors
- Early small studies suggest the feasibility and potential high activity of combinations of checkpoint inhibitors and angiogenesis inhibitors (e.g. pembrolizumab with lenvatinib and atezolizumab with bevacizumab)

# 





## CAR T-cell therapy antigen targets in clinical trials

#### CAR T cells have been engineered to target many different antigens to treat various cancers

| Hematologic malignancies <sup>1</sup> |                                                          | Solid malignancies <sup>1</sup> |                                                                               |  |
|---------------------------------------|----------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------|--|
| Antigen                               | Cancer                                                   | Antigen                         | Cancer                                                                        |  |
| BCMA                                  | MM                                                       | CAIX                            | Renal cell carcinoma                                                          |  |
| CD123                                 | AML, leukemia, lymphoma                                  | CEA                             | Liver metastases, liver, adenocarcinoma, gastric, colorectal, breast          |  |
| CD138                                 | MM                                                       | C-MET                           | Breast                                                                        |  |
| CD16V                                 | DLBCL, MCL, PMBCL, FL                                    | EGFR                            | EGFR+ solid tumors, GBM, glioma                                               |  |
| CD19                                  | CLL, NHL, ALL, DLBCL, PMBCL, MCL, DLBCL transf. FL,      | EGFRvIII                        | Glioma, GBM, glioblastoma                                                     |  |
|                                       | lymphoma, FL, PLL, DMBCL, leukemia, SLL, BAL, HL, MLBCL, | EpCam                           | Liver, stomach, breast                                                        |  |
|                                       | MM                                                       | EphA2                           | Malignant glioma                                                              |  |
| CD19/CD20                             | DLBCL                                                    | ErbB2/Her2                      | HER2+ malignancy, sarcoma, GBM, head and neck, breast, glioblastoma,          |  |
| CD19/CD22                             | Leukemia, lymphoma                                       | FAP                             | Metastatic mesothelioma                                                       |  |
| CD20                                  | ALL, CLL, PLL, DLBCL, FL, MCL, leukemia, Lymphoma, SLL,  | FR-a                            | Ovarian                                                                       |  |
|                                       | MZL, NHL                                                 | GD2                             | Neuroblastoma, sarcomas                                                       |  |
| CD22                                  | FL, ALL, NHL, DLBCL, MCL, leukemia, lymphoma             | GPC3                            | Hepatocellular carcinoma, LSCC, GPC3+ solid tumor                             |  |
| CD30                                  | NHL, HL, lymphoma, CD30+ cancer                          | IL-13Ra2                        | Malignant glioma, brain and CNS                                               |  |
| CD33                                  | AML                                                      | L1-CAM                          | Neuroblastoma                                                                 |  |
| CD38 <sup>2</sup>                     | B cell malignancies                                      | Mesothelin                      | MPM, MPDAC, malignant pleural disease, pancreatic, breast, mesothelin+ tumors |  |
| CD70                                  | CD70+ cancer                                             | MUC1                            | Hepatocellular carcinoma, NSCLC, TNBC, PC, malignant glioma, CC, GC           |  |
| CD123 <sup>2</sup>                    | B cell malignancies                                      | MUC16ecto                       | Ovarian                                                                       |  |
| lg k                                  | CLL, NHL, MM                                             | PD-L1                           | GBM                                                                           |  |
| IL-1RAP                               | CLL                                                      | PSCA                            | Pancreatic                                                                    |  |
| Lewis Y                               | MM, AML, MDS                                             | PSMA                            | Prostate                                                                      |  |
| NKG2D ligand                          | AML, MDS, MM                                             | ROR1                            | NSCLC, breast cancer (TNBC)                                                   |  |
| ROR1                                  | CLL, SLL, MCL, ALL                                       | VEGFR-2                         | various                                                                       |  |

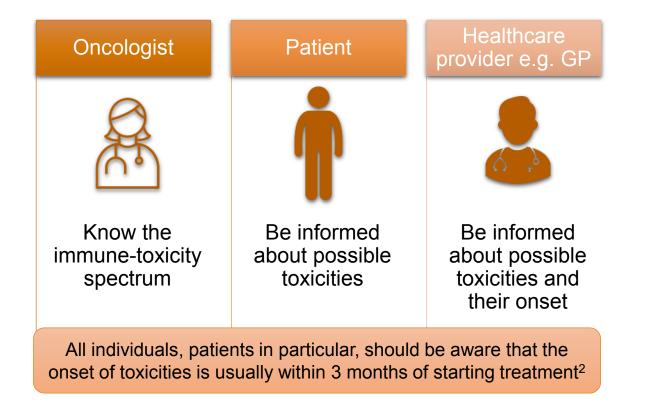


Expanded abbreviations in notes section. 1. Hartmann et al. EMBO Mol Med 2017;9:1183–97. 2. ClinicalTrials.gov. Available from: https://clinicaltrials.gov/ct2/show/NCT03125577. Accessed April 2018.

## CAR T cells: selected adverse events

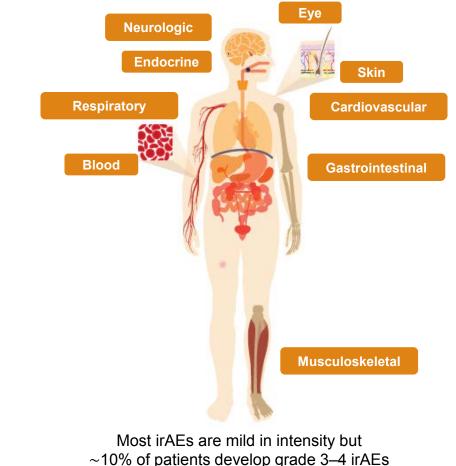
CD19 B cell **B**-cell Cytokine aplasia CAR T cell CD19 alignar Time Tumor cell Release of cvtokine from immune cells eradication The development of neurologic toxicities, including To date, the most prevalent adverse The severity of reported events for 'on-target, offconfusion, delirium, expressive aphasia, effect following infusion of CAR T cells is tumor' toxicity has ranged from manageable obtundation, myoclonus, and seizure, has been the onset of immune activation, known lineage depletion (B-cell aplasia) to severe toxicity reported in patients who received CD19-specific as CRS<sup>1</sup> (5.6–90% in clinical trials)<sup>2</sup> (death), depending on the target<sup>1</sup> CAR T cells<sup>1</sup> (12–48% in clinical trials)<sup>2</sup> antibody CAR T cell Both cellular and humoral rejection of CAR The risk of insertional oncogenesis following gene Several dermatologic complications T cells have been demonstrated due to the transfer into T cells is seemingly have also been described, including low; however, investigators must remain vigilant immunogenicity of foreign protein. Host reaction secondary cutaneous malignancies<sup>3</sup> can manifest as anaphylaxis or allergy<sup>1</sup> and adhere to strict monitoring<sup>1</sup>






CAR, chimeric antigen receptor; CD, cluster of differentiation; CRS, cytokine-release syndrome.

1. Bonifant et al. Mol Ther Oncolytics 2016;3:16011. 2. Kerre. Belgian J Hematol 2017;8:94–101. 3. Rubin et al. J Am Acad Dermatol 2016;75:1054–7.


# Principles of irAE management: cooperation between all players

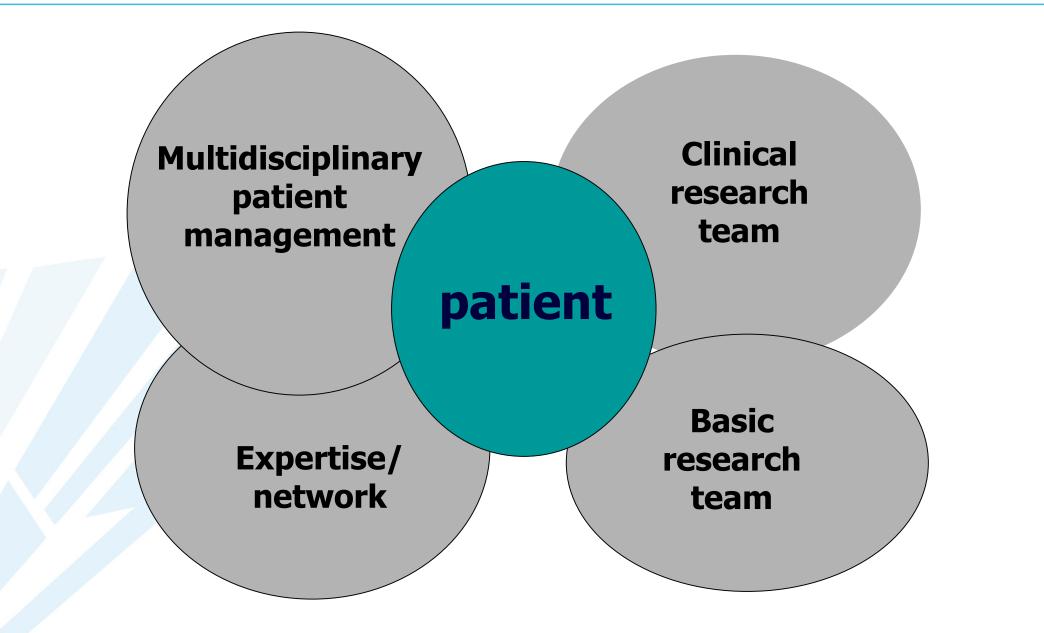
Communication between patients, healthcare providers and oncologists is vital to successful irAE management<sup>1,2</sup>



The type, onset and severity of immunotherapy-related adverse events varies. Healthcare providers are advised to remain vigilant for any symptoms at all times and refer to appropriate guidelines and/or organ specialists for management strategies relating to different and specific types of immunotherapies

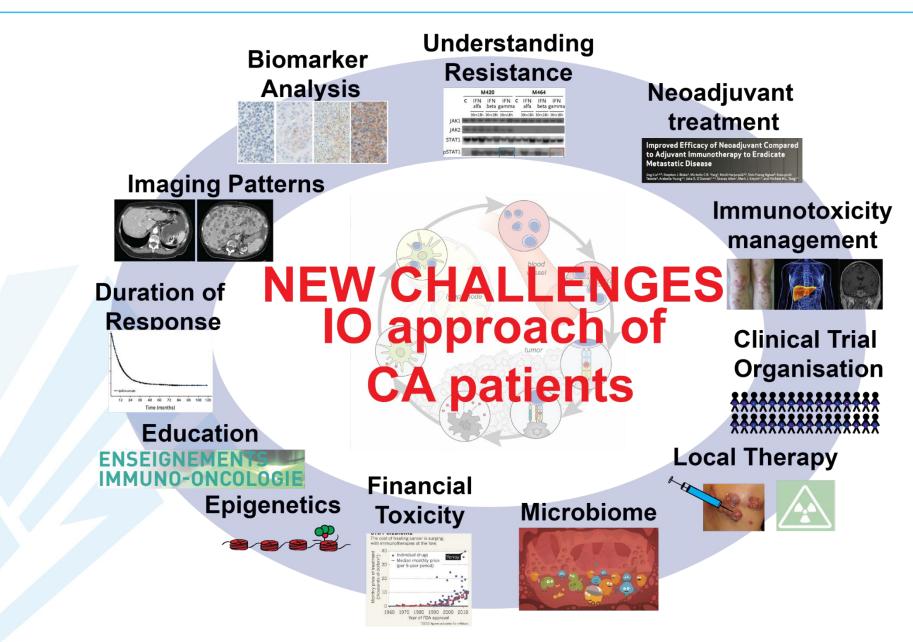
#### Nearly all organ systems can be affected<sup>1,3</sup>




- 3

GP, general practitioner; irAE, immune-related adverse event.

1. Champiat et al. Ann Oncol 2016;27:559-74. 2. Haanen et al. Ann Oncol. 2017;28:iv119-iv142. 3. Postow et al. NEJM 2018;378:1586-8.


#### **UZ LEUVEN** Collaboration for optimal patient management





# 





# Partnering for Education & Optimizing Treatment in ImmunoScience

www.immunoscienceacademy.be

The future is bright, as long as we invest in research and in optimal patient management and medical education



The ImmunoScience Academy is organized and funded by Bristol-Myers Squibb Job no. NOBE18NP01544-04 Date of preparation: August 2018 Copyright © 2018 by Bristol-Myers Squibb Company



## Disclaimer

While Bristol-Myers Squibb uses reasonable efforts to include accurate and up-to-date information in this material, Bristol-Myers Squibb makes no warranties or representations as to its accuracy. Bristol-Myers Squibb assumes no liability or responsibility for any errors or omissions in the content of the material. Neither Bristol-Myers Squibb nor any other party involved in creating, producing or delivering the material is liable for any direct, incidental, consequential, indirect or punitive damages arising out of your access to, or use of, the material.

You should assume that everything you see or read on this presentation is copyrighted, unless otherwise noted, and may not be used without mentioning the source. Bristol-Myers Squibb neither warrants nor represents that your use of materials displayed on the Site will not infringe rights of third parties not owned by or affiliated with Bristol-Myers Squibb.

Nothing on these presentations should be construed as the giving of advice or the making of a recommendation and it should not be relied on as the basis for any decision or action. BMS, nor other parties involved, accepts no liability for the accuracy or completeness or use of, nor any liability to update, the information contained on this Presentation. These materials are provided "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.



Copyright © 2019 by Bristol-Myers Squibb Company

www.immunoscienceacademy.be